Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.810
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1355056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606294

RESUMO

Edwardsiella piscicida, a significant intracellular pathogen, is widely distributed in aquatic environments and causes systemic infection in various species. Therefore, it's essential to develop a rapid, uncomplicated and sensitive method for detection of E. piscicida in order to control the transmission of this pathogen effectively. The recombinase-aided amplification (RAA) assay is a newly developed, rapid detection method that has been utilized for various pathogens. In the present study, a real-time RAA (RT-RAA) assay, targeting the conserved positions of the EvpP gene, was successfully established for the detection of E. piscicida. This assay can be performed in a one-step single tube reaction at a temperature of 39°C within 20 min. The RT-RAA assay exhibited a sensitivity of 42 copies per reaction at a 95% probability, which was comparable to the sensitivity of real-time quantitative PCR (qPCR) assay. The specificity assay confirmed that the RT-RAA assay specifically targeted E. piscicida without any cross-reactivity with other important marine bacterial pathogens. Moreover, when clinical specimens were utilized, a perfect agreement of 100% was achieved between the RT-RAA and qPCR assays, resulting a kappa value of 1. These findings indicated that the established RT-RAA assay provided a viable alternative for the rapid, sensitive, and specific detection of E. piscicida.


Assuntos
Edwardsiella , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos , Edwardsiella/genética , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
2.
ACS Nano ; 18(15): 10454-10463, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38572806

RESUMO

DNA isothermal amplification techniques have been applied extensively for evaluating nucleic acid inputs but cannot be implemented directly on other types of biomolecules. In this work, we designed a proximity activation mechanism that converts protein input into DNA barcodes for the DNA exponential amplification reaction, which we termed PEAR. Several design parameters were identified and experimentally verified, which included the choice of enzymes, sequences of proximity probes and template strand via the NUPACK design tool, and the implementation of a hairpin lock on the proximity probe structure. Our PEAR system was surprisingly more robust against nonspecific DNA amplification, which is a major challenge faced in existing formats of the DNA-based exponential amplification reaction. The as-designed PEAR exhibited good target responsiveness for three protein models with a dynamic range of 4-5 orders of magnitude down to femtomolar input concentration. Overall, our proposed protein-to-DNA converter module led to the development of a stable and robust configuration of the DNA exponential amplification reaction to achieve high signal gain. We foresee this enabling the use of protein inputs for more complex molecular evaluation as well as ultrasensitive protein detection.


Assuntos
Técnicas Biossensoriais , DNA , DNA/genética , DNA/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
3.
Anal Chim Acta ; 1302: 342486, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580404

RESUMO

BACKGROUND: Analysis of CpG methylation is informative for cancer diagnosis. Previously, we developed a novel method to discriminate CpG methylation status in target DNA by blocking recombinase polymerase amplification (RPA), an isothermal DNA amplification technique, using methyl-CpG binding domain (MBD) protein 2 (MBD2). The method was named MBD protein interference-RPA (MBDi-RPA). In this study, MBDi-RPA was performed using methyl-CpG binding protein 2 (MeCP2), another MBD family protein, as the blocking agent. RESULTS: MBDi-RPA using MeCP2 detected low levels of CpG methylation, showing that it had higher sensitivity than MBDi-RPA using MBD2. We also developed real-time RPA, which enabled rapid analysis of DNA amplification without the need for laborious agarose gel electrophoresis and used it in combination with MBDi-RPA. We termed this method real-time MBDi-RPA. The method using MeCP2 could determine the abundance ratio of CpG-methylated target DNA simply and rapidly, although highly sensitive detection was challenging. SIGNIFICANCE AND NOVELTY: Real-time MBDi-RPA using MeCP2 could be potentially useful for estimating CpG methylation status in target DNA prior to more detailed analyses.


Assuntos
Metilação de DNA , Técnicas de Amplificação de Ácido Nucleico , DNA/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases
4.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594417

RESUMO

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Assuntos
Vírus da Leucose Aviária , Técnicas de Diagnóstico Molecular , Transcrição Reversa , Animais , Vírus da Leucose Aviária/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos
5.
Anal Chim Acta ; 1304: 342541, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637051

RESUMO

BACKGROUND: Digital polymerase chain reaction (digital PCR) is an important quantitative nucleic acid analysis method in both life science research and clinical diagnostics. One important hypothesis is that by physically constraining a single nucleic acid molecule in a small volume, the relative concentration can be increased therefore further improving the analysis performance, and this is commonly defined as the confinement effect in digital PCR. However, experimental investigation of this confinement effect can be challenging since it requires a microfluidic device that can generate partitions of different volumes and an instrument that can monitor the kinetics of amplification. (96). RESULTS: Here, we developed a real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip) that can generate droplet of 125 nL, 25 nL, 5 nL, and 1 nL by a simple "load-slip" operation. In the digital region, by reducing the volume, the relative concentration is increased, the amplification kinetic can be accelerated, and the time to reach the fluorescence threshold, or Cq value, can be reduced. When the copy number per well is much higher than one, the relative concentration is independent of the partition volume, thus the amplification kinetics are similar in different volume partitions. This system is not limited to studying the kinetics of digital nucleic acid amplification, it can also extend the dynamic range of the digital nucleic acid analysis by additional three orders of magnitude by combining a digital and an analog quantification algorithm. (140). SIGNIFICANCE: In this study, we experimentally investigated for the first time the confinement effect in the community of digital PCR via a new real-time digital PCR system with a multivolume droplet array SlipChip (Muda-SlipChip). And a wider dynamic range of quantification methods compared to conventional digital PCR was validated by this system. This system provides emerging opportunities for life science research and clinical diagnostics. (63).


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Reação em Cadeia da Polimerase em Tempo Real , Técnicas de Amplificação de Ácido Nucleico/métodos , Dispositivos Lab-On-A-Chip , Algoritmos
6.
Biotechnol J ; 19(4): e2400026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622795

RESUMO

Single-stranded DNA (ssDNA) is the foundation of modern biology, with wide applications in gene editing, sequencing, DNA information storage, and materials science. However, synthesizing ssDNA with high efficiency, high throughput, and low error rate in vitro remains a major challenge. Various methods have been developed for ssDNA synthesis, and some significant results have been achieved. In this review, six main methods were introduced, including solid-phase oligonucleotide synthesis, terminal deoxynucleotidyl transferase-based ssDNA synthesis, reverse transcription, primer exchange reaction, asymmetric polymerase chain reaction, and rolling circle amplification. The advantages and limitations of each method were compared, as well as illustrate their representative achievements and applications. Especially, rolling circle amplification has received significant attention, including ssDNA synthesis, assembly, and application based on recent work. Finally, the future challenges and opportunities of ssDNA synthesis were summarized and discussed. Envisioning the development of new methods and significant progress will be made in the near future with the efforts of scientists around the world.


Assuntos
DNA de Cadeia Simples , DNA , DNA de Cadeia Simples/genética , Reação em Cadeia da Polimerase/métodos , DNA Polimerase Dirigida por DNA , Oligonucleotídeos , Técnicas de Amplificação de Ácido Nucleico/métodos
7.
Mol Biol Rep ; 51(1): 490, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578476

RESUMO

BACKGROUND: One of the most challenging aspects of nucleic acid amplification tests is the extraction of genomic DNA. However, achieving satisfactory quality and quantity of genomic DNA is not always easy, while the demand for rapid, low-cost and less laborious DNA isolation methods is ever-increasing. METHODS AND RESULTS: We have developed a rapid (⁓2 min) crude DNA extraction method leading to direct-PCR that requires minimum reagents and laboratory equipment. It was developed by eliminating the time-consuming purification steps of DNA extraction, by processing the sample in optimized amounts of Taq KCl PCR buffer and DNARelease Additive/Proteinase K in only two minutes and carrying out amplification using conventional Taq DNA polymerase. The DNA preparation method was validated on muscle tissue samples from 12 different species as well as 48 cooked meat samples. Its compatibility was also successfully tested with different types of PCR amplification platforms extensively used for genetic analysis, such as simplex PCR, PCR-RFLP (Restriction Fragment Length Polymorphism), multiplex PCR, isothermal amplification, real-time PCR and DNA sequencing. CONCLUSIONS: The developed protocol provides sufficient amount of crude DNA from muscle tissues of different species for PCR amplifications to identify species-of-origin via different techniques coupled with PCR. The simplicity and robustness of this protocol make nucleic acid amplification assays more accessible and affordable to researchers and authorities for both laboratory and point-of-care tests.


Assuntos
DNA , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , DNA/genética , Sequência de Bases , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase em Tempo Real , Músculos
8.
Anal Chim Acta ; 1302: 342474, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580403

RESUMO

BACKGROUND: N6-methyladenosine (m6A) is a common modification in RNA, crucial for various cellular functions and associated with human diseases. Quantification of m6A at single-base resolution is of great significance for exploring its biological roles and related disease research. However, existing analysis techniques, such as polymerase chain reaction (PCR) or loop-mediated isothermal amplification (LAMP), face challenges like the requirement for thermal cycling or intricate primer design. Therefore, it is urgent to establish a simple, non-thermal cycling and highly sensitive assay for m6A. RESULTS: Leveraging the inhibitory effect of m6A on primer elongation and uncomplicated feature of the isothermal exponential amplification reaction (IEXPAR), we have developed an extension-based IEXPAR (E-IEXPAR). This approach requires just a single extension primer and one template, simplifying the design process in comparison to the more complex primer requirements of the LAMP methods. The reactions are conducted at constant temperatures, therby elimiating the use of thermal cycling that needed in PCR methods. By combining IEXPAR with an extension reaction, E-IEXPAR can identify m6A in RNA concentrations as low as 4 fM. We have also introduced a new analytical model to process E-IEXPAR results, which can aid to minimize the impact of unmodified adenine (A) on m6A measurements, enabling accurate m6A quantification in small mixed samples and cellular RNA specimens. SIGNIFICANCE AND NOVELTY: E-IEXPAR streamlines m6A detection by eliminating the need for intricate primer design and thermal cycling, which are common in current analytical methods. Its utilization of an extension reaction for the initial identification of m6A, coupled with a novel calculation model tailored to E-IEXPAR outcomes, ensures accurate m6A selectivity in mixed samples. As a result, E-IEXPAR offers a reliable, straightforward, and potentially economical approach for specifically assaying m6A in both biological function studies and clinical research.


Assuntos
Adenosina/análogos & derivados , Técnicas de Amplificação de Ácido Nucleico , RNA , Humanos , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Temperatura , Sensibilidade e Especificidade
9.
J Med Virol ; 96(3): e29481, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425184

RESUMO

Hepatitis C remains a global health problem, especially in poverty-stricken areas. A rapid and sensitive point-of-care (POC) diagnostic tool is critical for the early detection and timely treatment of hepatitis C virus (HCV) infection. Here, for the first time, we reported a novel molecular diagnostic assay, termed reverse transcription multiple cross displacement amplification integrated with a gold-nanoparticle-based lateral flow biosensor (RT-MCDA-AuNPs-LFB), which was developed for rapid, sensitive, specific, and visual identification of HCV. HCV-RT-MCDA induced rapid isothermal amplification through a specific primer set targeting the 5'untranslated region gene from the major HCV genotypes 1b, 2a, 3b, 6a, and 3a that are prevalent in China. The optimal reaction temperature and time for RT-MCDA-AuNPs-LFB were 68°C and 25 min, respectively. The limit of detection of the assay was 10 copies per test, and the specificity was 100% for the experimental strains. The whole detection procedure, including crude nucleic acid isolation (~5 min), RT-MCDA (68°C, 25 min), and visual AuNPs-LFB result confirmation (less than 2 min), was performed within 35 min. The preliminary results indicated that the HCV-RT-MCDA-AuNPs-LFB assay could be a valuable tool for sensitive, specific, visual, cost-saving, and rapid detection of HCV and has potential as a POC diagnostic platform for field screening and early clinical detection of HCV infection.


Assuntos
Técnicas Biossensoriais , Hepatite C , Nanopartículas Metálicas , Humanos , Hepacivirus/genética , Sensibilidade e Especificidade , Técnicas de Amplificação de Ácido Nucleico/métodos , Ouro , Hepatite C/diagnóstico , Técnicas Biossensoriais/métodos
10.
Front Cell Infect Microbiol ; 14: 1281827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465235

RESUMO

With growing concerns about Group B streptococcal (GBS) infections and their adverse effects on perinatal pregnancies, including infection, premature delivery, neonatal septicemia, and meningitis, it is urgent to promote GBS screening at all pregnancy stages. The purpose of this study is to establish a device-independent, fast, sensitive, and visual GBS detection method. Taking advantage of the characteristics of the recombinase polymerase isothermal amplification (RPA), the activity of the nfo nuclease cleavage base analog (tetrahydrofuran, THF) site, and the advantages of visual reading of the lateral flow chromatography strip (LFS), a GBS detection method was developed. This method focused on the conservative region of the Christie-Atkins-Munch-Petersen factor encoded by the cfb gene, a virulence gene specific to GBS. Two forward primers, two biotin-labeled reverse primers, and one fluorescein isothiocyanate (FITC)-labeled and C3spacer-blocked probe were designed. The study involved optimizing the primer pair and probe combination, determining the optimal reaction temperature and time, evaluating specificity, analyzing detection limits, and testing the method on 87 vaginal swabs from perinatal pregnant women. The results showed that the visual detection method of GBS-RPA-LFS, using the cfb-F1/R2/P1 primer probe, could detect GBS within 15 min at the temperature ranging from 39°C to 42°C. Furthermore, the method specifically amplified only GBS, without cross-reacting with pathogens like Lactobacillus iners, Lactobacillus crispatus, Candida albicans, Listeria monocytogenes, Yersinia enterocolitica, Klebsiella Pneumoniae, Enterobacter cloacae, Citrobacter freundii, Vibrio alginolyticus, Vibrio parahaemolyticus, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, or Trichomonas vaginalis. It could detect a minimum of 100 copies per reaction. In clinical 98 samples of vaginal swabs from pregnant women, the agreement rate between the GBS-RPA-LFS method and TaqMan real-time fluorescence quantification method was 95.92%. In conclusion, this study successfully established a combined RPA and LFS GBS in situ detection platform, with short reaction time, high sensitivity, high specificity, portability, and device independence, providing a feasible strategy for clinical GBS screening.


Assuntos
Recombinases , Infecções Estreptocócicas , Recém-Nascido , Feminino , Gravidez , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade , Patologia Molecular , Nucleotidiltransferases , Streptococcus agalactiae/genética , Infecções Estreptocócicas/diagnóstico
11.
Chem Commun (Camb) ; 60(28): 3778-3781, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38494893

RESUMO

A twice-walk strategy based on a three-dimensional (3D) cleat-equipped DNA walking machine with a high signal amplification efficiency was investigated for ultrasensitive detection of miRNA. Impressively, addition of duplex-specific nuclease (DSN) just once drove the twice-walk strategy, making the strategy simpler. With the advantages of being simple, rapid and ultrasensitive, the biosensor offers potential for use in early clinical diagnosis.


Assuntos
Técnicas Biossensoriais , MicroRNAs , MicroRNAs/genética , DNA , Técnicas Biossensoriais/métodos , Endonucleases , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção
12.
Eur J Surg Oncol ; 50(4): 108250, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461568

RESUMO

INTRODUCTION: Sentinel lymph node (SLN) biopsy is part of surgical treatment of apparent early-stage cervical cancer. SLN is routinely analyzed by ultrastaging and immunohistochemistry. The aim of this study was to assess the survival of patients undergoing SLN analyzed by one-step nucleic acid amplification (OSNA) compared with ultrastaging. METHODS: Single-center, retrospective, cohort study. Patients undergoing primary surgery and SLN mapping ( ±pelvic lymphadenectomy) for apparent early-stage cervical cancer between May 2017 and January 2021 were included. SLN was analyzed exclusively with OSNA or with ultrastaging. Patients with bilateral SLN mapping failure, with SLN analyzed alternatively/serially with OSNA and ultrastaging, and undergoing neo-adjuvant therapy were excluded. Baseline clinic-pathological differences between the two groups were balanced with propensity-match analysis. RESULTS: One-hundred and fifty-seven patients were included, 50 (31.8%) in the OSNA group and 107 (68.2%) in the ultrastaging group. Median follow up time was 41 months (95%CI:37.9-42.2). 5-year DFS in patients undergoing OSNA versus ultrastaging was 87.0% versus 91.0% (p = 0.809) and 5-year overall survival was 97.9% versus 98.6% (p = 0.631), respectively. No difference in the incidence of lymph node recurrence between the two groups was noted (OSNA 20.0% versus ultrastaging 18.2%, p = 0.931). In the group of negative SLN, no 5-year DFS difference was noted between the two groups (p = 0.692). No 5-year DFS and OS difference was noted after propensity-match analysis (87.6% versus 87.0%, p = 0.726 and 97.4% versus 97.9%, p = 0.998, respectively). CONCLUSION: The use of OSNA as method to exclusively process SLN in cervical cancer was not associated with worse DFS compared to ultrastaging. Incidence of lymph node recurrence in the two groups was not different.


Assuntos
Linfadenopatia , Ácidos Nucleicos , Linfonodo Sentinela , Neoplasias do Colo do Útero , Feminino , Humanos , Linfonodo Sentinela/patologia , Metástase Linfática/patologia , Estudos de Coortes , Estudos Retrospectivos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/cirurgia , Neoplasias do Colo do Útero/patologia , Biópsia de Linfonodo Sentinela/métodos , Linfonodos/patologia , Excisão de Linfonodo , Linfadenopatia/patologia , Técnicas de Amplificação de Ácido Nucleico/métodos
13.
Biosens Bioelectron ; 254: 116187, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38518558

RESUMO

The expansion of large-scale aquaculture has exacerbated the challenge of aquatic diseases, resulting in substantial economic losses annually. Currently, traditional laboratory-based diagnostic methods are time-consuming and costly, hindering on-site testing for individual farmers. We address this issue by developing a state-of-the-art handheld isothermal nucleic acid amplification device (WeD-1) capable of fluorescence tracking of reactions and integrating it with an enhanced one-pot Prokaryotic Argonaute based nucleic acid detection method, enabling duplex visual detection of aquatic pathogens. WeD-1 is portable, reusable, user-friendly, and cost-effective, offering real-time smartphone interaction and enabling real-time fluorescence observation during the reaction. The enhanced one-pot Loop-Mediated Isothermal Amplification (LAMP)-PfAgo method, incorporating paraffin-encapsulated lyophilized PfAgo protein, achieves precise target-specific cleavage, significantly enhancing multiplex nucleic acid detection. This innovation streamlines on-site testing, negating the need for specialized laboratory conditions while ensuring an aerosol-free system. With newly developed and highly sensitive LAMP primer sets, our compact WeD-1/LAMP-PfAgo nucleic acid rapid testing system exhibits remarkable sensitivity, readily detecting aquatic pathogens with naked eyes from rapidly prepared fish and shrimp samples within 40 min, even when the Ct values are as high as 34.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Animais , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidade e Especificidade
14.
Biosens Bioelectron ; 255: 116240, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554576

RESUMO

Public health events caused by pathogens have imposed significant economic and societal burdens. However, conventional methods still face challenges including complex operations, the need for trained operators, and sophisticated instruments. Here, we proposed a fully integrated and automated centrifugal microfluidic chip, also termed IACMC, for point-of-care multiplexed molecular diagnostics by harnessing the advantages of active and passive valves. The IACMC incorporates multiple essential components including a pneumatic balance module for sequential release of multiple reagents, a pneumatic centrifugation-assisted module for on-demand solution release, an on-chip silicon membrane module for nucleic acid extraction, a Coriolis force-mediated fluid switching module, and an amplification module. Numerical simulation and visual validation were employed to iterate and optimize the chip's structure. Upon sample loading, the chip automatically executes the entire process of bacterial sample lysis, nucleic acid capture, elution quantification, and isothermal LAMP amplification. By optimizing crucial parameters including centrifugation speed, direction of rotation, and silicone membrane thickness, the chip achieves exceptional sensitivity (twenty-five Salmonella or forty Escherichia coli) and specificity in detecting Escherichia coli and Salmonella within 40 min. The development of IACMC will drive advancements in centrifugal microfluidics for point-of-care testing and holds potential for broader applications in precision medicine including high-throughput biochemical analysis immune diagnostics, and drug susceptibility testing.


Assuntos
Técnicas Biossensoriais , Mycobacterium tuberculosis , Ácidos Nucleicos , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Testes de Sensibilidade Microbiana , Patologia Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Testes Imediatos , Ácidos Nucleicos/análise , Escherichia coli , Dispositivos Lab-On-A-Chip
15.
J Agric Food Chem ; 72(14): 8167-8179, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38509823

RESUMO

The existing aptamers for cadmium (Cd2+), the common toxic heavy metal contaminant in food, cannot meet the requirements for detecting Cd2+ in rapid detection methods. In previous work, we found that coupling aptamer-peptide conjugates (APCs) with peptides and aptamers can provide a less disruptive method with a significantly improved affinity. Moreover, we found that the spatial conformation of aptamers and peptides is crucial for obtaining proper affinity in APC. Therefore, we describe a simple design strategy to obtain a series of APCs with different affinities by designing peptide orientations (N-terminal, C-terminal). The best affinity was found for APC(C1-N) with a binding constant (Ka) of 2.23 × 106 M-1, indicating that the APC(C1-N) affinity was significantly increased by 829.17% over aptamer. Finally, a rolling-circle amplification (RCA)-coupled ratio fluorescence-based biosensor for Cd2+ detection was established with a detection limit of 0.0036 nM, which has great potential for practical aquatic product detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Corantes Fluorescentes/química , Cádmio , Aptâmeros de Nucleotídeos/química , Peptídeos , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Limite de Detecção
16.
Clin Chim Acta ; 557: 117864, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38461865

RESUMO

BACKGROUND AND AIMS: A pilot external quality assessment (EQA) scheme for molecular detection of Ureaplasma urealyticum (UU) was conducted by the National Center for Clinical Laboratories (NCCL) to evaluate the testing capabilities of clinical laboratories and the actual performance of DNA-based nucleic acid amplification tests (NAAT) and RNA-based NAATs when applied in clinical settings. MATERIALS AND METHODS: The EQA panel contained twelve lyophilized samples, including positive samples containing inactivated cell culture supernatants of UU at different concentrations and sterile saline for negative samples. The positive samples were further divided into three groups of high, moderate and low concentrations. The panels were distributed to the participants and the datasets were analyzed according to the qualitative results. RESULTS: A total of 365 laboratories participated in the EQA scheme, and 360 results submitted by 338 laboratories were collected, of which 96.11 % (346/360) of the returned results and 95.86 % (324/338) of the laboratories were deemed competent. The positive percentage agreement (PPA) was ≥ 97.5 % for high and moderate concentration samples, but varied significantly for low concentration samples, decreasing from 86.94 % to 51.94 % as the sample concentration decreased. Additionally, for low concentration samples, RNA-based NAAT showed higher PPAs than DNA-based NAATs, but these results were specific to UU supernatants used in this study. CONCLUSION: Most of UU detection assays employed by the participants were generally consistent with their estimated limit of detection (LOD), and the majority of participants can reliably detect UU samples with high and moderate concentrations, while the poor analytical performance for low concentration samples requires further improvement and optimization.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Ureaplasma urealyticum , Humanos , Ureaplasma urealyticum/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Laboratórios , RNA , DNA , China
17.
Biosens Bioelectron ; 253: 116147, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38452568

RESUMO

We herein present a multifunctional self-priming hairpin probe-based isothermal amplification, termed MSH, enabling one-pot detection of target nucleic acids. The sophisticatedly designed multifunctional self-priming hairpin (MSH) probe recognizes the target and rearranges to prime itself, triggering the amplification reaction powered by the continuously repeated extension, nicking, and target recycling. As a consequence, a large number of double-stranded DNA (dsDNA) amplicons are produced that could be monitored in real-time using a dsDNA-intercalating dye. Based on this unique design approach, the nucleocapsid (N) and the open reading frame 1 ab (ORF1ab) genes of SARS-CoV-2 were successfully detected down to 1.664 fM and 0.770 fM, respectively. The practical applicability of our method was validated by accurately diagnosing 60 clinical samples with 93.33% sensitivity and 96.67% specificity. This isothermal one-pot MSH technique holds great promise as a point-of-care testing protocol for the reliable detection of a wide spectrum of pathogens, particularly in resource-limited settings.


Assuntos
Técnicas Biossensoriais , COVID-19 , Ácidos Nucleicos , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , Técnicas Biossensoriais/métodos , Sensibilidade e Especificidade
18.
Biochemistry (Mosc) ; 89(1): 53-64, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467545

RESUMO

Isothermal nucleic acids amplification that requires DNA polymerases with strand-displacement activity gained more attention in the last two decades. Among the DNA polymerases with strand-displacement activity, Bst exo- is the most widely used. However, it tends to carry out nonspecific DNA synthesis through multimerization. In this study, the effect of nucleotide sequence on the Bst exo- binding with DNA and on the efficiency of multimerization initiation, are reported. Preference for binding of the "closed" form of Bst exo- to the purine-rich DNA sequences, especially those containing dG at the 3'-end of the growing chain was revealed using molecular docking of the single-stranded trinucleotides (sst) and trinucleotide duplexes (dst). The data obtained in silico were confirmed in the experiments using oligonucleotide templates that differ in the structure of the 3'- and 5'-terminal motifs. It has been shown that templates with the oligopurine 3'-terminal fragment and oligopyrimidine 5'-terminal part contribute to the earlier start of multimerization. The results can be used for design of nucleotide sequences suitable for reliable isothermal amplification. To avoid multimerization, DNA templates and primers containing terminal dA and/or dG nucleotides should be excluded.


Assuntos
DNA , Nucleotídeos , Simulação de Acoplamento Molecular , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos
19.
Microb Pathog ; 189: 106600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428469

RESUMO

Echinococcus granulosus (Eg) and Echinococcus multilocularis (Em) are the two most widely prevalent types of echinococcosis. Several diagnostic methods have been developed for detecting Eg and Em. However, some limitations, such as being time-consuming, needing expensive instruments, or exhibiting low sensitivity, make these methods unsuitable for on-site detection. In this study, a dual-RPA assay was established to detect and differentiate Eg and Em. The primer concentration ratio, reaction time, and reaction temperature of the dual-RPA were optimized. The result showed that the primer concentration ratio of Eg:Em was 400 nM:400 nM, and the best amplification efficiency was obtained by reacting at 38 °C for 20 min. The sensitivity, specificity, and repeatability of the assay were also tested. The assay's detection limit for both Eg and Em was 10 copies/µL. The assay showed reasonable specificity by testing ten parasitic nucleic acids. The assay's intra- and inter-batch coefficients of variation were below 10%, which indicates robust reproducibility of the assay. Finally, to validate the performance of the dual-RPA assay, it was compared with real-time PCR by using 86 clinical nucleic acid samples. The coincidence rate of Eg between dual-RPA and TaqMan real-time PCR was 96.51%, and the coincidence rate of Em between dual-RPA and TaqMan real-time PCR was 98.84%, indicating its potential for accurate clinical diagnosis. Therefore, this study established a rapid and sensitive dual-RPA assay that can rapidly detect and differentiate Eg and Em in one reaction tube and provided a new assay for the detection of echinococcosis in the field.


Assuntos
Equinococose , Echinococcus granulosus , Animais , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Equinococose/diagnóstico , Echinococcus granulosus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos
20.
Anal Chim Acta ; 1299: 342416, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499413

RESUMO

BACKGROUND: Mpox is a zoonotic disease caused by mpox virus (MPXV) infection. Since May 2022, there has been a marked increase in human mpox cases in different regions. Rash, fever, and sore throat are typical signs of mpox. However, other viruses, such as the B virus (BV), herpes simplex virus types 1 (HSV-1), herpes simplex virus types 2 (HSV-2), and varicella zoster virus (VZV), can also infect people and cause comparable symptoms. Therefore, clinical symptoms and signs alone make distinguishing MPXV from these viruses difficult. RESULTS: In this study, we combined suspension microarray technology with recombinase-aided amplification technology (RAA) to establish a high-throughput, sensitive, and quantitative method for detecting MPXV and other viruses that can cause similar symptoms. The experimental results confirmed that the technique has outstanding sensitivity, with a minimum detection limit (LOD) of 0.1 fM and a linear range of 0.3 fM to 20 pM, spanning five orders of magnitude. The approach also exhibits exquisite selectivity, as the amplified signal can only be detected when the target virus nucleic acid is present. Additionally, serum recoveries ranging from 80.52% to 119.09% suggest that the detection outcomes are generally considered reliable. Moreover, the time required for detection using this high-throughput method is very short. After DNA extraction, the detection signal amplified by isothermal amplification on the bead array can be obtained in just 1 h. SIGNIFICANCE AND NOVELTY: Our research introduces a new technique that utilizes suspension microarray technology and isothermal amplification to create a high-throughput nucleic acid assay. This innovative method offers multiple benefits compared to current techniques, such as being cost-effective, time-efficient, highly sensitive, and having high throughput capabilities. Furthermore, the assay is applicable not only for detecting MPXV and viruses with similar symptoms, but also for clinical diagnostics, food safety, and environmental monitoring, rendering it an effective tool for screening harmful microorganisms.


Assuntos
Vírus da Varíola dos Macacos , Varíola dos Macacos , Humanos , Vírus da Varíola dos Macacos/genética , DNA Viral/genética , DNA Viral/análise , Herpesvirus Humano 3/genética , Análise em Microsséries , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...